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Abstract 

One of the primary challenges in intrusion detection is 
modelling typical application behavior, so that we can rec- 
ognize attacks by their atypical effects without raising too 
many false alarnis. We show how static analysis may be 
used to automatically derive a model of application behav- 
ior: The result is a host-based intrusion detection system 
with three advantages: a high degree of automation, pro- 
tection against a broad class of attacks based on corrupted 
code, and the elimination of false alarnis. We report on 
our experience with a prototype implementation of this tech- 
nique. 

1. Introduction 

Computer security has undergone a major renaissance in 
the last five years. Beginning with Sun’s introduction of the 
Java language and its support of mobile code in 1995, pro- 
gramming languages have been a major focus of security 
research. Many papers have been published applying pro- 
gramming language theory to protection problems [25,24], 
especially information flow [ 171. Security, however, is a 
many-faceted topic. and protection and information flow ad- 
dress only a subset of the problems faced in building and de- 
ploying secure systems. As attackers and defenders are in 
an arms race, deploying a system with strictly static but in- 
complete security measures is doomed to failure: this gives 
the attacker the last move, and therefore victory. 

Formal methods, alone, are insufficient for building and 
deploying secure systems. Intrusion detection systems have 
been developed to provide an online auditing capability to 
alert the defender that something appears to be wrong. Un- 
fortunately, most intrusion detection systems suffer from 
major problems as described in Section 2. We take a 
new approach to the problem that eliminates many of these 
drawbacks. 

Our approach constrains the system call trace of a pro- 
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gram’s execution to be consistent with the program’s source 
code. We assume that the program was written with be- 
nign intent. This approach deals with attacks (such as buffer 
overflows) that cause a program to behave in a manner in- 
consistent with its author’s intent. These are the most preva- 
lent security problems. Of course, some security problems 
are directly attributable to faulty application logic, such as 
programs that fail to check authentication information be- 
fore proceeding, and one limitation of our intrusion detec- 
tion system is that it does not detect attacks that exploit 
logic errors. Application logic bugs, however, are dwarfed 
in practice by buffer overflow problems and other vulnera- 
bilities that allow for execution of arbitrary machine code 
of the attacker’s choice [8, 351, and it is the latter type of 
vulnerability on which we focus. 

The rest of this paper is organized as follows: Section 2 
discusses related work, Section 3 discusses our framework, 
Section 4 discusses the models we use, Section 5 discusses 
our implementation, Section 6 evaluates our results, Sec- 
tion 7 discusses future work. and Section 8 concludes. 

2 Related Work 

Early work on intrusion detection was due to Ander- 
son [ I ]  and Denning [9]. Since then, it has become a very 
active field. Most intrusion detection systems (IDS) are 
based on one of two methodologies: either they generate 
a model of a program’s or system’s behavior from observ- 
ing its behavior on known inputs (e.g., [14]), or they require 
the generation of a rule base (e.g., [ 3 ] ) .  In both cases, these 
systems then monitor execution of the deployed program or 
system and raise an alarm if the execution diverges from the 
model. The current model-based approaches all share one 
common problem: a truly robust intrusion detection system 
must solve a special case of the machine learning problem, a 
classic AI problem. That is, to prevent false alarms, the IDS 
must be able to infer, from statistical data, whether the cur- 
rent execution of the system is valid or not. The false alarm 
rate of present systems is a major problem in practice [ 2 ] .  
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KO et al., and others have proposed a very natural so- 
lution to this problem: every program should come with a 
specification of its intended behavior [21, 19, 22, 291. This, 
of course, has been the dream of the formal methods com- 
munity for 25 years, and is as yet unrealized. We believe it  
is likely to remain unrealized for some time to come. AI- 
though KO et al.’s specification language is simple and ad- 
mits relatively compact specifications, we believe that the 
need for manually written specifications will dramatically 
limit the impact of this work’. We philosophically agree 
with the direction of KO et al.’s work, but we propose to 
side-step its main drawback by automatically deriving the 
specification from the program. 

3. The framework 

We would like to detect the case where an application is 
penetrated and then exploited to harm other parts of the sys- 
tem. To this end, we define a specification of expected ap- 
plication behavior, and then we monitor the actual behavior 
to see if i t  ever deviates from the specification. We describe 
first how we monitor application behavior, and next we pro- 
pose techniques for automated specification construction. 

To reduce the potentially huge volume of trace data, we 
consider only the security-relevant behavior of the applica- 
tion of interest. The monitoring strategy should then ensure 
that a compromised application cannot compromise system 
integrity’ while still evading detection. In general, i t  will 
always be possible for attackers to evade detection in our 
system if they do not cause any harm, but if they want to 
cause harm, they will need to interact with the operating 
system in a way which risks detection. 

In many cases of practical interest, we may safely make 
the following convenient assumption [ 151: 

Assumption. A coniproniised application cannot cause 
niiich harm unless it interacts with the underlying operating 
system, and those interactions may be readily monitored. 

If-as is typically the case3-the only way to interact 
with the operating system is via system calls, i t  suffices 
to monitor just the application’s system call trace. Since 
monitoring system call traces is usually straightforward in 

’ However, one promising direction to remedy these limitations can be 
found in KO’s recent work on blending manual rule bases with automated 
specification generation [20]. Note that others have used runtime tech- 
niques to identify program invariants [ 121; however, because the identified 
invariants concern dataflow. rather than sequencing of system calls, they 
do not seem to be well-suited to intrusion detection. 

‘We do not consider denial of service attacks in this work. 
‘We do not claim that the assumption is always true. Some operating 

systems are starting to include partial exceptions to this rule (e.g., user- 
level networking). However, few security-critical applications use these 
exceptional features, so we can simply forbid their use: the rare application 
which uses these features may introduce false alarms, but at least malicious 
code will not be able to exploit the special features in an attack. 

practice, the bulk of the challenge will be to derive a spec- 
ification of the application’s expected interaction with the 
operating system. 

We derive our specification of expected application be- 
havior from the application source code, along with a fixed 
model of the operating system. We model the application 
as a transition system with some (possibly very large) set of 
states along with some admissible transitions. If we ever de- 
tect a system call trace that is incompatible with this transi- 
tion system, we may conclude that the most likely explana- 
tion is that we are under attack: for instance, the adversary 
may have introduced malicious code of her own choosing 
and caused it to be executed, e.g., via a buffer overrun or 
format string attack. Therefore, to detect intrusions, our ba- 
sic approach is to look for system call traces that could not 
have been generated by the underlying transition system. 

One subtlety is that the adversary may adapt to our meth- 
ods. Indeed, we later introduce a new type of attack, the 
mimicry attack, which applies to all intrusion detection sys- 
tems and in some cases may allow the adversary to fool the 
intrusion detection system by camouflaging the malicious 
code so that i t  behaves much like the application would. 
We do not have a complete defense against mimicry attacks, 
but we make some progress towards quantifying resistance 
against this type of attacker tactic. See Section 6 for details. 

Our intrusion detection system does not detect all at- 
tacks, but i t  does allow us to detect one of the most com- 
mon effects of a penetration: execution of corrupted code. 
We observe that, in practice, once an attacker has compro- 
mised the target application, she will often download some 
‘exploit code’ of her choosing into the application and use 
i t  to execute various operations with the application’s privi- 
leges. Since this exploit code is not originally present in the 
application source code, if it is ever executed we expect to 
see behavior that is incompatible with the source code and 
thus to detect the attack. 

One problem is that transition systems derived directly 
from the source are usually too complex to be useful. We 
could naively start a second ‘slave’ copy of the application 
running on the same inputs in an interpreter that simulates 
all interactions with the outside world, checking at every 
step whether we obtain the same system call trace from both 
the master and the slave. This naive replication strategy 
could probably be made to work, but it has two important 
disadvantages. First, replication may be hard to implement, 
because it is likely to be very difficult in practice to remove 
every last shred of non-determinism from the application 
(e.g., random number generators, process scheduling, tim- 
ing channels, interaction with the outside environment, etc.) 
[23]. Second, and more importantly, the slave is exposed to 
the same risks as the master: any set of inputs that tickles a 
security flaw in the master is likely to trigger the same flaw 
in the slave as well and thereby escape detection. 
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We tackle these problems by simplifying the transition 
system greatly, abstracting away unnecessary complexity. 
Since we care only about the sequence of system calls is- 
sued, we prune away all other aspects of the model, even 
to the point of disregarding the contents of local variables, 
data structures, and all other data flow. We then simulate 
the simplified transition system in an interpreter with cor- 
respondingly minimal operational semantics. This abstrac- 
tion process has the potential to fix the problems of naive 
replication: it  can be very fast, because most of the code 
has been pruned away; we can afford to deal with non- 
determinism, since the transition system has been drasti- 
cally simplified (for instance, non-deterministic finite au- 
tomata are not much more expensive to simulate than deter- 
ministic finite automata); and the minimal operational se- 
mantics may remove many of the pitfalls of C (e.g., buffer 
overrun attacks will not affect a model that ignores the con- 
tents of all buffers). 

To summarize our approach: We first pre-compute a 
model of expected application behavior, built statically 
from program source code; then, we monitor the program 
and check its system call trace for compliance to the model 
at runtime. The primary challenge is in automating model 
generation, which we discuss next. 

4. Models 

In this section, we propose a sequence of models that we 
use to specify expected application behavior: first, a trivial 
model to illustrate the main idea; then, the callgraph model; 
third, a refinement, the abstract stack model; and finally, the 
low-overhead digraph model. 

Each model is intended to satisfy a common soundness 
property: false alarms should never occur. To achieve this 
goal, we must make a number of mild assumptions about 
our operating environment. We consider only portable C 
code that has no implementation-defined behavior: for ex- 
ample, we assume that there are no intentional array bounds 
violations, NULL-pointer dereferences, or other memory 
errors; we assume there is no function pointer arithmetic 
or type-casting between function pointers and other point- 
ers; and we assume there is no application-defined runtime 
code generation. These assumptions are not critical: viola- 
tions may introduce false alarms but will never cause us to 
miss attacks we otherwise would have detected. Nonethe- 
less, in our experience the security-critical applications in 
widespread use do conform to these assumptions. 

From a formal language viewpoint, all of our models in- 
volve recognizing a sentence in a regular or context-free 
language. However, this viewpoint is much less intuitive 
than dealing directly with automata and will not be dis- 
cussed further. For ease of discussion, we will refer to 
terminating programs and finite or pushdown automata, 

as appropriate. All of our results directly extend to non- 
terminating programs. 

4.1. A trivial model 

We illustrate these ideas by describing a minimalist 
example of an intrusion detection system following this 
framework. Let S be the set of system calls that the ap- 
plication can ever make. The set of allowable system call 
traces-i.e., our model of expected behavior-will then be 
exactly the regular language S*.  If, at runtime, we ever ob- 
serve the application issuing some system call not in S ,  we 
prevent the system call from executing, kill the application, 
and sound the alarm. 

This model is easy to derive with automated source anal- 
ysis tools. Because in practice system calls may be easily 
recognized in source code, the set S may be inferred easily 
by simply walking the parse tree and pattern-matching for 
system call invocations. 

Such an approach is simple, easy to implement, sound, 
and efficient, but it  will fail to detect many attacks. No at- 
tack that operates using just system calls from S will ever 
be detected, and in practice we can expect this failure mode 
to be common if S is too large. Another problem is that the 
approach is too coarse-grained, since many common sys- 
tem calls are too dangerous to allow without any restric- 
tions. For example, if the open() system call is included 
in S, attackers will be free to modify any file whatsoever at 
any time without fear of detection. Furthermore, this naive 
approach scales poorly to large applications, which are ex- 
actly the ones at greatest risk for intrusions, because large 
applications yield large sets S .  Consequently, a more pre- 
cise model is needed. 

4.2. The callgraph model 

The foremost problem with the naive model described 
above is that we have thrown away all information about 
the ordering of the possible system calls. In this section we 
show how to retain some ordering information. 

One clean way to represent information on the ordering 
of possible system calls is to express our model as a regular 
language over E, the set of system calls. For ease of model 
generation, it is convenient to use an equivalent represen- 
tation of the model as a non-deterministic finite automaton 
(NDFA). We describe next how to use a NDFA to charac- 
terize the expected system call traces. 

Building the model Deriving the model is a simple appli- 
cation of control-flow analysis. We first build the control- 
flow graph G = (V, E )  associated with the program source 
code. We assume that each node of the control-flow graph 
executes at most one system call and that we can recognize 
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f(ink XI { 
x ? g e t u i d o  : g e t e u i d o ;  
x++ ; 

> 
g o  c 

f d = open ("f ool', 0-RDONLY) ; 
f CO) ; c lose ( fd )  ; f (1) ; 
e x i t  (0) ; 

1 

'Figure 1. An example C program (left), and its associated callgraph model (right). Transitions to 
Wrong are omitted to avoid cluttering the diagram. Dashed lines indicate interprocedural edges, 
which are represented as €-transitions in the NDFA. 

where system calls occur. Then we note that the control- 
flow graph can naturally be viewed as a specification of a 
NDFA with statespace Vu{Wrong}, transitions induced by 
E ,  and alphabet C. Each edge w -+ w E E of the control- 
flow graph induces a transition w % w of the automaton, if 
there is a system call a at node U ,  or the €-transition w i w 
otherwise; €-transitions represent transfer of control where 
no system call is executed. Every proper state (i.e., each 
state w # Wrong) is considered an accepting state. The spe- 
cial state Wrong is non-accepting and contains a self-loop 
Wrong 4 Wrong on every a E C; when a node w con- 
tains no outgoing transitions on some symbol a E C, we 
add an implicit transition w 4 Wrong. The resulting au- 
tomaton is non-deterministic because in general we cannot 
statically predict, for example, which branch of an if-then- 
else expression will be taken at runtime. See Figure 1 for 
an example. 

We use this automaton as our model of expected be- 
havior, so that an observed trace is accepted only if i t  is 
accepted by the NDFA. We call this the callgraph model. 
Note that this model throws away a lot of information about 
the execution of the application: in particular, we ignore 
all of its internal state other than the program counter. 
Nonetheless, it preserves a soundness property: 

Claim. There are no false alarms when using the callgraph 
model. 

The claim follows from the observation that, by con- 
struction, every possible path of execution through the 
control-flow graph corresponds to an accepting path of the 
NDFA, and thus every dynamically-possible execution trace 
will be accepted by the NDFA. 

Monitoring algorithm When monitoring the application, 
we simulate the operation of the NDFA on the observed sys- 

tem call trace, resolving non-determinism by exploring all 
possible paths in breadth-first order. This requires O( IVI) 
operations per observed system call. Note that more ef- 
ficient techniques exist-for instance, the NDFA may be 
converted to a DFA, either ahead of time or on the fly, and 
caching may be used to speed up the simulation [18]- 
but we have not explored any of these alternatives. See 
Section 5 for more implementation details, and Section 6 
for measurements of our implementation's performance and 
detection power. 

Function calls One issue not mentioned so far is how to 
deal with function calls. After we generate a control-flow 
graph for each procedure, we connect them together: we 
split each call site w into two nodes U ,  U' and add extra edges 
w + Entry(!) and Ex i t ( f )  -+ w' for each function f that 
could be called from 'U. See the dashed edges in Figure I 
for an example. Here En t ry ( f )  and Exi t ( f )  denote the 
unique entry and exit nodes for f, as might be expected. 
This so-called monomorphic (or context-insensitive) analy- 
sis produces a single large graph that may be analyzed as 
above. 

Imprecision in the model One limitation of the call- 
graph model is that it includes impossible paths, due to 
the monomorphic treatment of function calls. In particular, 
consider two call sites v ,  w that both call the same function 
f ;  then the expanded control-flow graph will contain paths 
of the form w -+ Entry( f )  -+ . . .  + Exi t ( f )  + w'. See 
Figure 1 for an illustrated example. Such an impossible path 
cannot occur in any real execution, because function calls 
will always return to the site where they were called from. 
Unfortunately, a NDFA is unable to express this constraint, 
so we end up with impossible paths through the automaton. 

Impossible paths in the callgraph model are a problem in 
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f ( i n t  x) 
x ? g e t u i d 0  : g e t e u i d o ;  
x++ ; 

> 
g o  c 

f d  = open(”foo”, O-RDONLY) ; 
f ( 0 )  ; c lose( fd)  ; f(1) ; 
e x i t  ( 0 )  ; 

> 

Entry(f) ::= getuid() Exit(f) 

Exit(f) ::= E 

Entry(g) ::= open() v 

I geteuid() Exit(f) 

w ::= Entry(f)  w’ 
v’ ::= close() w 
w ::= Entry(f) w‘ 
w‘ ::= exi t ( )  Exit(g) 

Exit(g) ::= E 

while (true) 
case pop() of 

Entry(f) 3 push(Exit(f)); push(getuid()) 
Entry(f) * push(Exit(f)); push(geteuid()) 
Exit(f) no-op 
Entry(g) push(v); push(open()) 

U /  + push(w); push(close0) 
W + push(w’); push(Entry(f)) 
W’ push(Exit(g)); push(exit()) 
Exit(g) no-op 
a E C 
otherwise + enter the error state, Wrong 

U + push ( v’ ) ; push (Entry( f)) 

read and consume a from the input 

Figure 2. The example C program again (left), with its associated context-free grammar (middle) and 
the resulting abstract stack model (right). 

practice. This imprecision causes our NDFA to be larger 
than necessary, and attacks that follow these impossible 
paths will remain undetected. As a consequence, intru- 
sion detection systems based on the callgraph model may 
in some cases be more permissive than we would like. 

4.3. The abstract stack model 

We next introduce the abstract stack model, which al- 
lows us to characterize more precisely the set of possible 
system call traces by eliminating impossible paths. The 
idea is to model n o t  only the program counter but also the 
state of the call stack. We extend our model so that the set 
of possible system call traces is allowed to form a context- 
free language. It is then natural to represent this abstraction 
of the program as a non-deterministic pushdown automaton 
(NDPDA), or equivalently, a context-free grammar. 

Building the NDPDA The pushdown automaton we con- 
struct will provide an intuitive model of program behavior. 
The state of the automaton will be an abstract summary of 
the state of the application. In particular, the automaton’s 
stack will form an abstract version of the program call stack: 
each symbol on the automaton’s stack will correspond to a 
single stack frame in the application’s call stack, where ev- 
erything but the return address has been abstracted away. 

The construction is as follows. We assume that we are 
given a global control-flow graph G = (V, E )  that includes 
interprocedural call edges. We generate a NDPDA with 
stack alphabet VUE, input alphabet C, and transitions given 
as follows. Suppose first that there is a node U E V on the 
top of the stack. If v is a function call site referencing a pro- 
cedure f ,  we pop U off the stack, push the corresponding 
return site U ’ ,  and finally push Entry( f )  on to the stack. If 

w is a function exit node, we pop w. If v is a non-call node, 
we pop w, push s if w issues the system call s E C (other- 
wise, we do not push anything for nodes that do  not make 
system calls), non-deterministically select some successor 
w of ’U with ‘U + w E E ,  and finally push w. On the other 
hand, i f s  E C is at the top of the stack, we attempt to match 
s against the current input symbol SI:  i f s  = s’, we consume 
the current input symbol and pop s off the stack; otherwise, 
we enter the state Wrong and reject the input string. As in 
the callgraph model, all proper states are accepting states. 
See Figure 2 for an example. 

This construction of the NDPDA ensures that every se- 
quence of operations to the program call stack during a nor- 
mal application execution will be among the set of paths ex- 
plored during the simulation of NDPDA. Since the NDPDA 
is non-deterministic, other paths may also be explored, but 
we can be sure that the correct one will not be omitted. At 
the same time, the increased precision of the abstract stack 
model makes it  less likely that real attacks will go unde- 
tected. 

The context-free model In our implementation, the ND- 
PDA is constructed directly. However, as the construction is 
rather detailed, it may be easier to consider building an (al- 
most, as explained below) equivalent context-free grammar 
for the program, with non-terminals taken from V ,  termi- 
nals in C (the set of system calls), and rules given as fol- 
lows4. If U is a function call site with corresponding return 
site U ’ ,  we add the rule U ::= Entry(f) ‘U’ for each function 
f that could be called from U .  For each non-call node U and 
each successor w of U ,  we add the rule U ::= a w if there is 
a system call a E C at ‘U, or the rule U ::= w otherwise. Fi- 

‘There are some complications with setjmp0 and other non-standard 
forms of control flow; see Section 5.1 for extensions to handle them. 
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nally, for each function f in the program, we add the t-rule 
Exit(f) ::= E .  This grammar is quite natural [27, 28, 6,7]. 

The simplification referred to above is that the NDPDA, 
by construction, also accepts all prefixes of sentences gen- 
erated by the grammar above. The actual grammar would 
be more complicated if it took this into account. 

The NDPDA described earlier may be obtained by ap- 
plying the trivial top-down construction to the context- 
free grammar obtained above (similar to LL(0)  parsing, 
except that we keep the conflicts and thus obtain a non- 
deterministic automaton). This top-down construction is 
convenient because its operation corresponds closely to ex- 
ecution in procedural languages such as C. See Figure 2 for 
an example. 

Monitoring algorithm To detect attacks, we must moni- 
tor the system calls issued by the application and simulate 
the operation of the NDPDA on those inputs. It turns out 
that efficient simulation of the NDPDA is a significant the- 
oretical and engineering challenge, especially as we scale 
up to intrusion detection on very large applications. 

The most naive approach is to exhaustively search 
through all possible non-deterministic choices of the ND- 
PDA. In other words, at each time step, we maintain a list 
of all possible stack configurations of the NDPDA; when 
a new system call is observed, for each previously possi- 
ble configuration we compute the set of new configurations 
the NDPDA might transition to, and update the list of possi- 
ble stack configurations. However, in practice this approach 
is untenable for any but the simplest application, because 
these lists grow exponentially large in the length of the sys- 
tem call trace (in fact, even infinitely large, in the presence 
of left-recursion). 

Less naively, we might hope that standard parsing al- 
gorithms might be applicable here. Of course, we cannot 
use standard parsers (such as yacc) because our NDPDA is 
non-deterministic. It is easy to see that, for every context- 
free grammar I?, there is some program which generates r, 
and in practice, real applications produce grammars with 
considerable non-determinism and complexity. So, we need 
an efficient algorithm for online parsing of general context- 
free languages. 

It is also important to have a top-down parsing routine. 
As described in Section 5, dealing with some of the special 
features of the Unix runtime environment requires us to oc- 
casionally step outside of the context-free framework and 
perform operations directly on the set of possible stack con- 
figurations. Real programs execute in a roughly top-down 
fashion-we start executing main() before executing any 
of its callees-so this seems to rule out bottom-up pars- 
ing. Unfortunately, much of the work in the literature on 
recognizing general context-free languages (e.g., the CYK, 
Earley, Tomita, and GLR techniques [37, IO, 16, 331) uses 

bottom-up methods. 
Consequently, we were forced to develop new techniques 

for efficient top-down parsing. A full description of our al- 
gorithm is outside of the scope of this paper, but we list 
a few useful properties of the algorithm that make i t  well 
suited for our purposes: 

0 It supports online parsing: as each system call is ob- 
served, we can decide whether the resulting partial 
trace forms the prefix of a sentence in the context-free 
language, as required for real-time intrusion detection. 

It is relatively efficient: like other general context-free 
recognizers, its worst-case running time is cubic in the 
length of the system call trace. This is likely to be 
too slow for large applications, but is much better than 
exponential-time solutions. In practice, we encounter 
cubic-time behavior only occasionally. 

0 Most importantly, it supports real-time access to the set 
of possible top-down parse trees. The key data struc- 
ture is a representation of the set of possible call stacks 
as a regular language over the alphabet of stack sym- 
bols. This lets us modify this data structure directly 
whenever we need to step outside of the context-free 
framework. 

More details on this algorithm are available elsewhere [34]. 

4.4. The digraph model 

We next introduce a very simple approach which com- 
bines some of the advantages of the callgraph model in a 
simpler formulation. The basic approach, first introduced 
in previous work on runtime intrusion detection [14], is to 
consider windows of consecutive system calls. 

Our model will thus be a list of the possible k-sequences 
of consecutive system calls, starting at an arbitrary point 
during program execution. In our prototype implementa- 
tion, we consider only the special case k = 2 for simplicity. 
Note that k-sequences of system calls with k = 2 are often 
referred to as digraphs, so we call this the digraph model. 
We consider here both the special case of digraphs and the 
general case. 

Building the model We could derive the set of possible 
k-sequences from the control-flow graph in a straightfor- 
ward fashion, but we observe that there is a more precise 
approach available if we use the context-free language of 
possible system call traces, L(l?), as introduced in Sec- 
tion 4.3. To determine whether the sequence s E Ck can 
occur in a system call trace during normal application exe- 
cution, we simply test whether (E" SE") n L(r)  # 0, which 
is effectively computable [ 18, 271. Repeating this test for 
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each s E C' gives a general algorithm to build the de- 
sired model. Unfortunately, this precomputation has run- 
ning time 0 ( k 3  x IEl x IC\'), which is exponential in k. In 
practice, it is slow enough that we have only experimented 
with the k = 2 case. 

Monitoring algorithm Detecting attacks then becomes 
easy once we have performed the above precomputation to 
build a list of the allowed k-sequences.' We keep a history of 
the last k - 1 system calls, and when we see a new system 
call, we check whether the resulting k-sequence is allowed. 
Thus, the runtime monitoring algorithm is extremely effi- 
cient for this model; the trade-off is that the digraph model 
is less precise than the callgraph or abstract stack model, 
and thus can be expected to miss more attacks. 

5. Implementation issues 

We sketched above three theoretical frameworks for im- 
plementing intrusion detection using static analysis. In 
practice, though, there are a number of complications that 
arise when implementing these ideas. We discuss here some 
of the important implementation challenges and how to han- 
dle them. 

5.1. Non-standard control flow 

Implementations of control-flow analysis, when in- 
tended for optimization, often give up in the presence of 
non-local control flow (such as signals, setjmpo, and so 
on). However, we have found that, in practice, real applica- 
tions of interest for intrusion detection often use these fea- 
tures. Therefore, we describe how to augment the modelling 
frameworks described above to incorporate these forms of 
non-standard control flow. 

Function pointers To build the program call-graph in the 
presence of function pointers, it is crucial to be able to 
predict the possible targets of every indirect call through a 
function pointer. Many sophisticated algorithms for pointer 
analysis are available in the literature [ 1 1,3 1,301, but in our 
implementation we simply assume that every pointer could 
refer to any function whose address has been taken. Empir- 
ically, even this very crude technique seems to suffice for 
our purposes. 

Signals Many operating systems allow applications to 
register a signal handler to be executed upon reception of 
a signal. It is straightforward to statically recognize sig- 
nal handlers: we simply look for system calls of the form 
signal (i , f p) , which binds the handler f p to the signal i 
so that when this signal is received, the function referred to 

by the function pointer fp will be called. Consequently, the 
real challenge is to augment the model to represent these 
additional possibilities for control flow. 

Naively, one might consider adding to the control-flow 
graph an extra edge from each node to each possible signal 
handler to represent this additional control flow. This naive 
solution would work, but it adds an enormous amount of ex- 
tra non-determinism to the control-flow graph, so our anal- 
ysis would become less precise: the intrusion detection sys- 
tem would become significantly slower (because we need to 
follow more possible paths in the control-flow graph) and 
poorer at recognizing intrusions (because real attacks might 
mimic unlikely paths through signal handlers and thereby 
avoid detection). We would prefer to model signals without 
incurring these costs. 

Fortunately, there is a clean solution available. We ex- 
ploit the presence of a runtime component in our system: 

Principle 1. If you can arrange to receive an extra event 
whenever some exceptional path (such as invocation of a 
signal handler) might be taken, you can often improve the 
precision of the model. 

In this case, we arrange to monitor not only the system 
calls the application makes but also the signals the applica- 
tion receivess, and we ensure that all the extra paths in the 
control-flow graph are pre-guarded by an initial signal re- 
ception event. In many Unix operating systems, all signal 
handlers invoke the sigreturn0 system call after they re- 
turn, so we also add a post-guard to the end of each extra 
path, too. 

It is straightforward to augment the control-flow graph 
to ensure that every execution of a signal handler will be 
bracketed by both a pre- and post-guard. These extra paths 
in the control-flow graph will not be triggered unless the 
appropriate signal is received, and to save space they may be 
implicitly represented and only re-generated on demand, so 
they are effectively invisible except in the cases where they 
are necessary. These techniques provide a precise, efficient, 
and simple way to extend any of the models in Section 4 to 
reflect the semantics of signals. 

The setjmpo primitive ANSI C provides a form of 
non-local control flow that is sometimes used to provide 
a crude form of exception handling or error recovery: the 
set jmp () primitive saves the stack pointer and other regis- 
ters, and then longjmp () may be called by a subroutine to 
roll the registers, and hence the stack, back to its saved state. 
In the callgraph model, we may simply add an extra tran- 
sition from each longjnp0 to every possible setjmpo, 

'The ability to monitor signals is conveniently already available with 
most existing mechanisms for process tracing, since it is used by some 
debuggers. 
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but this will not work for the abstract stack model because 
long jmp () modifies the call stack. 

We do not know of a good static approach to call stack 
analysis in the presence of set jmp(>, but fortunately, there 
is no need to solve this problem statically. Instead, we ex- 
tend the runtime monitoring agent. Our monitor maintains a 
running list of all call stacks that were possible when some 
setjmp() call was visited earlier in this execution trace. 
Each longjmpo call can be emulated by adding this accu- 
mulated list to the automaton’s current set of states. Since 
sets of states are represented as regular languages in the ab- 
stract stack model (see Section 4.3), the union operations 
may be implemented efficiently. 

As a future extension, we might also enforce the con- 
straint that returning from a function activation invalidates 
any setjmp(> i t  may have called. This would allow us to 
garbage-collect old set jmp (1 states (thereby reducing stor- 
age costs by some unknown amount) and to exclude impos- 
sible longjmp (> targets (thereby improving precision and 
attack detection power). So far, though, we have not found 
the need. Our experience has been that setjmp0 is typ- 
ically used just often enough that it cannot be completely 
ignored but rarely enough that the burden of the above sim- 
ulation techniques is minimal. 

In any case, our experience with setjmp0 suggests the 
following lesson for hybrid static-dynamic systems6: 

Principle 2. Some progrunt properties that are diflcult to 
infer statically may become easier to model satisfactorily 
when the burden is ofloaded to a runtime agent, where 
available. 

5.2. Other modelling challenges 

Libraries Our approach requires a model for each library 
function that might be called. Therefore, we use a modu- 
lar analysis to build these models. In particular, we mod- 
ified the gee compiler to output intermediate analysis out- 
put files alongside each object file as it compiled, and we 
modified the linker to combine the intermediate files into a 
whole-program analysis. A side benefit was that we could 
analyze existing software packages by simply using the pro- 
vided Makefiles to compile them. 

61n the digraph model, neither Principle I nor 2 is much help, since no 
help is available from the runtime agent nor is there any convenient way to 
monitor setjmp0 and longjmp0 calls at runtime. Thus, we are forced 
to use more conservative techniques. Consider temporarily extending the 
alphabet with the symbols 5 and E to represent setjmp0 and longjmp0 
invocations. We infer that digraph slsz is possible in some program ex- 
ecution only if ( I )  slsz is a possible digraph in the original (unextended) 
language, or (2) both SI E is a possible digraph when the language is ex- 
tended with .€ and Ssz is a possible digraph when the language is extended 
with and 1. 

We found that library code taxed the limits of our tool 
more thoroughly than most applications, and a dispropor- 
tionate amount of our effort was spent on the C libraries. 
For instance, the GNU stdio implementation uses func- 
tion pointers extensively to emulate an object-oriented pro- 
gramming style; with our naive pointer analysis, the in- 
ferred models were too imprecise, so we replaced our au- 
tomated analysis results with hand-crafted models. In con- 
trast, the database library l i b d b  also uses function pointers 
extensively to parametrize database implementations, but in 
this case we were willing to accept the imprecision. As a 
third example, the GNU ELF libraries make heavy use of 
both setjmp0 and function pointers to implement excep- 
tion handling, so we resorted to refining the inferred model 
by hand in some places to improve its precision. 

There are many disadvantages to hand-built models: they 
are time-consuming to construct; they are difficult to get 
right (and thus unsoundness and false alarms are a risk); and 
they make it unpleasant to keep up with changes to the code. 
Ideally, we would have preferred a more precise automatic 
analysis so that we could avoid these disadvantages, but in 
practice even our crude techniques were generally sufficient 
to get the job done without compromising our primary goals 
in  the few cases where manual analysis was necessary. 

Dynamic linking Dynamically linked libraries pose an- 
other challenge, because they force us to update the model 
at runtime. In our implementation, we predict in advance 
the set of libraries which might be linked in and build mod- 
els for all of them from source. This can introduce false 
alarms if our prediction becomes out of date (when, e.g., a 
new version of the library becomes available), which means 
that everything must be updated whenever the underlying 
libraries are. This is not a fundamental limitation, and a 
more satisfying solution would be to build a model at run- 
time from object code, but we have not explored this direc- 
tion because it has not been necessary in our experience. In 
any case, binding applications to libraries statically has sub- 
stantial security benefits, because it prevents introduction of 
Trojan horses via dynamic linking attacks. 

Threads Threads pose yet another challenge, because the 
context-switching operation introduces another type of im- 
plicit control flow. If it were possible to reliably receive 
‘thread context-switch’ events (see Principle l ) ,  handling 
threads would be straightforward; this is no problem for 
kernel threads, but unfortunately, user threads pose a thorny 
challenge, and we know of no good general solution. A sec- 
ond issue is that threaded code may contain security vulner- 
abilities due to synchronization bugs that we do not know 
how to detect. Because of these challenges, and because no 
security-critical application we examined used threads, our 
prototype implementation does not support threaded code. 
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5.3. Optimizations 

Irrelevant system calls Up to now we have described an 
intrusion detection system that monitors all system calls the 
application invokes, and we originally expected this to be 
optimal. However, we found that ignoring, e.g., the brko 
system call can greatly improve performance by reducing 
the size and ambiguity of the model: in many programs, 
memory allocation can occurjust about anywhere, so seeing 
a brk0 system call gives us very little contextual informa- 
tion. This may cause us to miss denial-of-service attacks, 
but those are beyond the scope of this paper. 

In some cases, ignoring certain system calls can even im- 
prove the precision of the model. It may sound paradoxical 
that throwing away information can improve precision, but 
consider the digraph model: excluding very common sys- 
tem calls gives more context. It is useful to be able to enable 
this optimization on a per-application basis. 

System call arguments The most important optimization 
is based on the observation that we can gain quite a bit of ex- 
tra information about the application behavior by examining 
the arguments to each system call. Since we can often stat- 
ically predict some system call arguments with little effort, 
we might as well check them at runtime. We recognize lex- 
ically constant system call arguments in our prototype and 
found that even this extremely crude technique provides no- 
ticeable improvements to both precision and performance; 
see the measurements in  the next section. 

6. Evaluation 

In this section we measure the performance of our three 
approaches (the abstract stack, callgraph, and digraph 
models) on a number of typical security-critical applica- 
tions that one might want to monitor for intrusions. For each 
model, we measure two variants: a basic implementation 
that ignores system call arguments, and then an improved 
implementation that checks all system call arguments that 
can be statically predicted. In each case, we focus on two 
key metrics: runtime overhead (pe@ormance), and robust- 
ness of detection against targeted attack (precision). As 
will become clear, our results indicate that there is a strong 
tradeoff between performance and precision. 

Performance In Figure 3, we show the runtime overhead 
incurred by our system when applied to four representative 
applications with known security vulnerabilities, finger, 
qpopper, procmail, and sendmail. Of these, finger 
is the smallest (at 1K lines of code, excluding comments, 
blank lines, and libraries), and sendmail is the largest (at 
32K lines); the other two are in the middle. The height of 

each bar in Figure 3 indicates the performance overhead of 
each model, measured in seconds of extra computation per 
transaction’. 

The figures use shading to show the effect of checking 
system call arguments. One might expect that checking ar- 
guments could improve performance by reducing ambiguity 
in the model and thus reducing the number of possible paths 
through the model that we need to explore at runtime. The 
measurements confirm this hypothesis, showing that-even 
though we implemented only an extremely crude data-flow 
analysis-the performance benefits are substantial. 

We initially expected that, due to its complexity, the ab- 
stract stack model would be consistently slower than the 
callgraph model. This is partially confirmed by our experi- 
ments, but we were surprised to find many exceptions. For 
instance, in  the case of procmail, i t  appears that the im- 
proved precision provided by the abstract stack model more 
than makes up for the complexity of this model. In general, 
moving to more precise models may reduce the degree of 
non-determinism and thereby reduce the number of possi- 
ble paths explored at runtime. 

Note that there is a wide variation in running times. The 
digraph models are consistently extremely fast (the over- 
head is too small to measure), but the other models are 
sometimes vastly slower. For sendmail, the callgraph and 
abstract stack models were so slow that we forcibly termi- 
nated the experiment after an hour of computation. Since 
our goal is for real-time intrusion detection, imposing more 
than a few seconds of latency onto any interactive applica- 
tion is absolutely unacceptable; an hour is clearly several 
orders of magnitude too much. Consequently, for some ap- 
plications, only the digraph model is fast enough; for oth- 
ers, the more sophisticated callgraph or abstract stack mod- 
els are also workable. We conclude that, in all cases, at least 
one of the approaches provides acceptable performance, but 
the type of model must be chosen on a per-application basis. 

Our prototype implementation has known problems that 
make its performance sub-optimal. See Section 7. 

Mimicry attacks To motivate the need for precise mod- 
els, we introduce a new class of attacks against intrusion 
detection systems, the mimicry attack. Recall that one of 
our primary design goals is to detect not only the attacks 
that are common today, but also to detect the attacks of the 
future. Furthermore, our model of the application proba- 
bly cannot be kept secret from attackers. Consequently, our 
models need to be precise enough that there is no way for 
an attacker to cause any harm without deviating from the 

’We use the word transaction to denote a single interactive event, such 
as delivery of a piece of email. For interactive applications that are not 
compute-intensive, WK believe the main goal is to avoid introducing niore 
than a few seconds of latency per transaction, and so WK measure absolute 
rather than relative overheads. All measurements were performed on a450 
MHz Pentium I1 running Java. using IBM’s JIT for Linux. 
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Figure 3. Overhead imposed by the run- 
time monitor for four representative ap- 
plications, measured in seconds of extra 
computation per transaction. 

Figure 4. Precision of each of the models, 
as characterized by the average branching 
factor (defined later in Section 6). Small 
numbers represent better precision. 

Notes on both figures: For each application, we show measurements for three models using a cluster of three vertical bars: the abstract 
stack model (leftmost bar), the callgraph model (middle), and the digraph model (rightmost). Each vertical bar uses shading to represent 
two measurements: the shorter, solid-colored segment represents the case where arguments are checked; the total height of the bar 
(including both the solid-colored and lightly-shaded regions) shows the case when arguments are ignored. 

model, even when the attacker can predict what model we 
are using. Otherwise, attackers will be free to develop ma- 
licious exploit code that mimics the operation of the appli- 
cation, staying within the confines of the model and thereby 
evading detection by our system despite its harmful effects. 

In general, if the attacker somehow obtains control of 
the application when our intrusion detection automata is in 
the state s ,  and if  some insecure state s’ is reachable from 
s through any path in the automata, then the attacker will 
be able to bring the system to an insecure state without risk 
of detection by synthesizing the system calls that make up 
the path s + . . . + s’. We call this a mimicry attack, and 
we expect that, as intrusion detection becomes more widely 
deployed, mimicry attacks are unavoidable [26]. 

Note that imprecise models contain impossible paths, 
which introduces a vulncrability to mimicry attacks if any 
of those paths can reach an insecure state. Consequently, 
the primary defense against mimicry attacks lies in high- 
precision models. 

Precision Unfortunately, we do not know the right way8 
to quantify an intrusion detection system’s degree of robust- 
ness against mimicry attacks, so we do not have a complete 

*In practice, it  may often be difficult even to identify just the set of 
insecure states of the system. 

characterization of the precision of our models. Nonethe- 
less, we will attempt to give some intuition for the preci- 
sion of our models by applying the following metric. Imag- 
ine freezing the intrusion detection system in the middle of 
some application execution trace. There is some set S of 
system calls that would be allowed to come next without 
setting off any alarms. We define the brunching fuctor to 
be the size of S. A small branching factor means that the 
intruder has few choices about what to do next if she wishes 
to evade detection, and so we can expect that small branch- 
ing factors leave the intruder most constrained and least able 
to cause harm. Finally, because we cannot predict at what 
point during execution the attacker might obtain control of 
the application, we suggest to measure the average brunch- 
ing factor over all normal execution traces. We stress that 
this metric is insufficient on its own, but it seems to yield a 
useful first approximation. 

Figure 4 shows the precision of our models on our 
four sample applications, under the average branching fac- 
tor metric. We can see that checking system call ar- 
guments provides substantial precision improvements, be- 
cause it  reduces the number of possible paths through the 
model, and because some system calls are harmless when 
their arguments are fixed in advance. For instance, an 
open(”/etc/motdl’, 0-RDONLY) call is harmless when 
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its arguments are statically known, but otherwise could po- 
tentially be exploited by attackers to overwrite arbitrary files 
on the system. Our experience is that unchecked system call 
arguments greatly increase our exposure to mimicry attacks. 
Since checking arguments improves both performance and 
precision, we conclude that it should always be enabled. 

We can also see that, when system call arguments are 
checked, the abstract stack model is much more precise than 
the callgraph model, which is itself more precise than the 
digraph model. 

We have also examined the generated models by hand 
to evaluate how much harm a sophisticated attacker could 
cause using mimicry techniques. We are confident that all 
three of the f i n g e r  models leave very little room for at- 
tack, due to the fact that the f i n g e r  source code does lit- 
tle else but open a network connection and access world- 
readable files on the system. Results for the other applica- 
tions, though, are mixed. The digraph model seems unlikely 
to resist a mimicry attack, and generally we feel it should 
not be relied upon for defense against malicious code spe- 
cially tailored to fool our system. However, the abstract 
stack model seems to do fairly well: we believe it would 
successfully limit the harmful effects of any compromise in 
qpopper or procmail. On the other hand, for sendmail, 
the generated abstract stack model is too complex for us to 
make any determination. 

We consider it an important open problem to develop a 
metric or methodology for quantifying the resistance of in- 
trusion detection systems to unforeseen attacks, such as the 
mimicry attacks introduced above. 

Attacks detected We have tested our system on a number 
of known attacks from the past decade or so. For instance, 
each of the four applications discussed above has a known 
security vulnerability; we confirmed that we were able to 
detect the known attack on those applications. 

Probably the most common class of attacks we detect 
are buffer overruns, which seem to account for perhaps half 
of all attacks in recent years [S, 351. Because most exist- 
ing exploit scripts grab full root privilege and take other 
distinctive actions (such as launching a shell under the at- 
tacker’s control) immediately after exploiting the overrun 
vulnerability, detection is typically straightforward for our 
tool. Our tool may even be overkill for detecting misbehav- 
ior this blatant-many other systems will also detect these 
attacks, albeit with substantial false alarm rates-but an un- 
usual feature of our tool is that i t  is also designed to detect 
some ‘stealthy’ attacks, as well. 

Our approach is also able to detect Trojan horses in 
trusted software. One current favorite of today’s attackers 
is the r o o t k i t  toolkit, which replaces some system utili- 
ties with a version that contains a backdoor. We verified 
that our implementation was able to detect when some of 
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these backdoors were exercised (which causes the behavior 
to deviate from that specified by the original source code). 

The most interesting feature of our approach is that it can 
also detect more exotic attacks, even ones that the designers 
themselves did not know about. For instance, one extremely 
subtle attack exploited the ability to pass environment vari- 
ables to t e l n e t d  to cause the dynamic linker to link with a 
shared library provided by the adversary; our system would 
have detected this attack, and any other dynamic-linking 
attack that might be discovered in the future, because our 
model is generated statically with the correct library. More 
recently, format string attacks have provided another un- 
expected way to introduce malicious code into vulnerable 
applications; since our detection mechanism makes no as- 
sumptions about how malicious code may be introduced, 
we can expect our system to apply to format string attacks, 
as well as to any other ways to take control of vulnerable 
applications that may be discovered in the future. We feel 
that these examples illustrate the importance of detecting 
unforeseen attacks. 

Despite these successes, we feel strongly that our tool 
should not be used as the sole defense against any of these 
attacks, but instead should be used to complement other 
techniques. Prevention is often a more effective barrier, 
and intrusion detection systems are usually best viewed as 
a backup layer in case the main line of defense is breached. 

7. Future work 

This work opens up many avenues for future research. 
The main limitation of our approach is that the run-t ime 
overhead is very high for some automata; however, we 
expect that we could achieve better performance by using 
more advanced static analysis to get more precise models. 
Also, the prototype was written in Java; we could recode our 
system in C or assembly language and directly integrate it 
into the operating system kernel to reduce the performance 
overhead substantially. This work also raises the intrigu- 
ing possibility of reusing the specification that we generate 
to automatically verify properties of security-critical pro- 
grams with a model checker. We note that our callgraph 
model is a finite automaton that appears nearly ideal for a 
model checker. Our stack model will be more challenging 
to model check, but there has been theoretical work in this 
area [ 5 ,  13, 32, 36,41. 

8 Conclusions 

We have successfully applied static program analysis to 
intrusion detection. Our system scales to handle real world 
programs. Also, our approach is automatic: the program- 
mer or system administrator merely needs to run our tools 



on the.program at hand. All other automatic approaches 
to intrusion detection to date have been based on statisti- 
cal inference, leading to many false alarms; in contrast, our 
approach is provably sound - when the alarm goes off, 
something has definitely gone wrong. Nonetheless, we can 
immediately detect if a program behaves in an impossible 
(according to its source) way, thus detecting intrusions that 
other systems miss. 

We relied on a strategic combination of static analysis 
and dynamic monitoring. This combination yields better 
results than either method alone and presents a promising 
new approach to the intrusion detection problem. 
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